Brown adipose tissue thermogenesis contributes to fentanyl-evoked hyperthermia.
نویسندگان
چکیده
Mu-opioid receptor activation increases body temperature and affects cardiovascular function. In the present study, fentanyl was administered intravenously [100 mug/kg (300 nmol/kg) iv] and intracerebroventricularly [3.4 mug (10 nmol) in 10 microl icv] in urethane-chloralose-anesthetized, artificially ventilated rats. Increases in brown adipose tissue (BAT) sympathetic nerve activity (SNA) (peak, +326% of control), BAT temperature (peak, +0.8 degrees C), renal SNA (peak, +146% of control), and heart rate (HR; peak, +32 beats/min) produced by intravenous fentanyl were abolished by premamillary transection of the neuraxis but were mimicked by intracerebroventricular administration of fentanyl, which also increased arterial pressure (AP; peak, +12 mmHg). Pretreatment with the opioid antagonist naloxone (100 nmol in 10 microl icv) eliminated the intracerebroventricular fentanyl-evoked responses. Microinjection of glycine (0.5 M, 60 nl) to inhibit local neurons in the rostral raphe pallidus (RPa) selectively reversed the intracerebroventricular fentanyl-evoked increases in BAT SNA and HR, while the fentanyl-evoked excitation in RSNA, the pressor responses, and the tachycardic responses were reversed by inhibition of neurons in the rostral ventrolateral medulla (RVLM). Prior inhibition of neurons in the dorsomedial hypothalamus eliminated the intracerebroventricular fentanyl-evoked increases in BAT SNA, BAT temperature, and HR, but not those in RSNA or AP. These results indicate that activation of central mu-opioid receptors with fentanyl can elicit BAT thermogenesis and cardiovascular stimulation through excitation of the sympathetic outflows to BAT, kidney, and heart. Activation of neurons in the rostral RPa and RVLM are essential for the increases in BAT thermogenesis and renal sympathoexcitation, respectively, induced by activation of central mu-opioid receptors. BAT thermogenesis could contribute to fentanyl-evoked hyperthermia, particularly in infants where BAT plays a significant role in thermoregulation.
منابع مشابه
Brown adipose tissue thermogenesis contributes to emotional hyperthermia in a resident rat suddenly confronted with an intruder rat.
Body temperature increases when individuals experience salient, emotionally significant events. There is controversy concerning the contribution of nonshivering thermogenesis in brown adipose tissue (BAT) to emotional hyperthermia. In the present study we compared BAT, core body, and brain temperature, and tail blood flow, simultaneously measured, to determine whether BAT thermogenesis contribu...
متن کاملCentral pathways controlling brown adipose tissue thermogenesis.
Heat production in brown adipose tissue contributes to cold defense, to stress-induced increases in body temperature, and to energy balance. Elucidating the functional organization of the central network controlling the sympathetic outflow to brown adipose tissue could provide a framework for understanding how dysregulation of thermogenesis contributes to hyperthermia and to obesity.
متن کاملPsychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia.
Psychological stress-induced hyperthermia (PSH) is a fundamental autonomic stress response observed in many mammalian species. Here we show a hypothalamomedullary, glutamatergic neural pathway for psychological stress signaling that drives the sympathetic thermogenesis in brown adipose tissue (BAT) that contributes to PSH. Using in vivo drug nanoinjections into rat brain and thermotelemetry, we...
متن کاملROS and Sympathetically Mediated Mitochondria Activation in Brown Adipose Tissue Contribute to Methamphetamine-Induced Hyperthermia
Methamphetamine (Meth) abuse has been shown to induce alterations in mitochondrial function in the brain as well as to induce hyperthermia, which contributes to neurotoxicity and Meth-associated mortality. Brown adipose tissue (BAT), a thermogenic site known to be important in neonates, has recently regained importance since being identified in significant amounts and in correlation with metabo...
متن کاملNonshivering thermogenesis without interscapular brown adipose tissue involvement during conditioned fear in the rat.
As with other forms of psychological stress, conditioned fear causes an increase in body temperature. The mechanisms underlying this stress-induced hyperthermia are not well understood, but previous research suggests that nonshivering thermogenesis might contribute, as it does during cold exposure. The major source of nonshivering thermogenesis in the rat is brown adipose tissue (BAT), and the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 288 3 شماره
صفحات -
تاریخ انتشار 2005